
Class Building Design Notes

Author: John M. Długosz
dhcgnd702@sneakemail.com  http://www.dlugosz.com/Perl6

Version 1.1

Table of Contents
 1 Perl 6 Class Building............................................................................................2
 2 How a Class is Made.............................................................................................2

 2.1 Need for Standard..........................................................................................3
 2.2 Executing Code at Compile Time....................................................................3

 3 Class Dispatch......................................................................................................4
 4 Terminology..........................................................................................................5

 4.1 AST (Abstract Syntax Tree).............................................................................5
 4.2 bless..............................................................................................................5
 4.3 class builder object........................................................................................5
 4.4 meta object....................................................................................................6
 4.5 Meta Object Protocol (MOP)............................................................................6

 5 Meta Object Design Details...................................................................................6
 5.1 Bootstrapping................................................................................................6
 5.2 Required Functions........................................................................................7
 5.3 Method Lookup..............................................................................................7
 5.4 More than Jello..............................................................................................8

 6 Class Builder Design Details.................................................................................9
 6.1 Semantic Level...............................................................................................9
 6.2 Class-Building Environment..........................................................................9
 6.3 Scenario.........................................................................................................9
 6.4 Required Functions........................................................................................9



 1 Perl 6 Class Building
The way a class is created in Perl 6 is very interesting.  While most languages you 
are familiar with treat the declarations as pure compile-time directives, Perl builds a 
class object by executing instructions written in Perl.  This allows much more 
flexibility and more give-and-take than the approach which separates the compiler 
from the run time.
The purpose of this paper is to explain what is known about this thus far, and to 
serve as a sounding board to flesh out details and complete the design.

It is particularly important that the way the “meta class” is driven to create the class 
is standardized, so that portable code can be written to do interesting things with it 
such as interface with other languages or create an entirely new class system with 
its own dispatch mechanics.

 2 How a Class is Made
Consider the following simple class:

class Dog {
   is Mammal;
   does Pet;
   has $.name = "fido";
   method foo () { ... }
   }

This might look similar to class declarations in C++, Java, etc. where everything is 
simply declarations for the compiler to understand innately.

In Perl 6, the situation is very different.

The block of the class is executed at compile-time, in the same manner as a BEGIN 
block.

And those things that look like declarations are actually function calls on the “class 
builder”.  The grammar makes them look and feel like declarations, but they are 
active statements to execute.

For example, the statement is Mammal will make a call to the meta object to add a 
base class to the definition it’s building.  The statement does Pet will likewise make a 
call to the builder to add a role.  The next line tells the builder to register an 
attribute, with the name $.name and a closure that produces a default value for it if 
needed later.  Finally, the last statement tells the builder to add a method, passing 
in the name and the sub block.

If you change the syntax to something more familiar to what it’s really doing, it 
would look something like this:

my Metaobject $dogclass = P6opaque_builder.new("Dog");
with $dogclass {
    .addBase(::Mammal);
    .addRole(::Pet);



    .addAttribute( :name<$.name>, default => {"fido"} );
    .addMethod( :name<foo>, block => { ... } );
    .buildit;
   }

 2.1 Need for Standard
What functions really are there to be called on the builder is what we need to design, 
rather than wait for every implementation to come up with something different.

The point is that this is not some deep dark magic, but a well-defined part of Perl 6. 
It is possible to write entirely new class systems as well as class representations. 
This is how we will interoperate with classes in other languages and virtual 
machines, as well as allow CPAN modules such as Self/Javascript style objects 
which are quite different from classes at all.

The exact same interface should be used for creating roles too.  So who knows what 
composition feature might be invented in the future, and implemented ready-to-run 
in portable Perl 6?

 2.2 Executing Code at Compile Time
Here is another example that you should look at in light of how the class block is 
really like a BEGIN block.

class Fustian {
   my $var1;
   has $.a;
   our $var2;
   sub helper () {  say $var1; }
   method foo ()
    {
     $var1 = self.a;
     helper;
    }
   }

The my and our lines are perfectly ordinary code, with meaning you know from 
normal blocks.  It means the same thing here!

The sub definition is perfectly ordinary, and again means the same thing here!

So what happens with the definition of foo?  The block forming its body is a closure, 
and that closure closes over the $var1.  It has no problem calling helper, as an 
ordinary sub whose name is in scope when the closure is compiled.

The processing of the block of the method needs something to be aware of the stuff 
in the class, but the things that have nothing to do with the class builder or the 
meta object just work as they always did in any code.

In fact, it makes you wonder if you could write code in the block of a class like this:

class Fustian {



   my $var1;
   has $.a;
   if $?OS ~~ /Windows/ {
       has $.b;
       say “adding Windows support”;
      }
   ...

The answer is Yes!  The code can compute things, call functions, and do whatever it 
likes as well as issues the has/is/does/method lines.  The block is executed only 
once, at compile time, just like a BEGIN block.  Executing that block will create and 
configure the class builder that describes the class, including the meta object used 
to bless instances of that class.

Now let’s try something a little more flamboyant.

sub add_attributes (Int $defval)
 {
  has Int $.a = $defval;
  has ::?CLASS $.next;
  has Str $.c;
 }

class George {
   has Int $.d;
   add_attributes(5);
   }

Now this is a course a toy example, and I’m not really suggesting doing something 
bizarre instead of using a role for attribute reuse.  But, imagine that add_attributes 
was reading configuration information from an XML file, or a .NET manifest, and 
automatically built classes to order.  Now are you seeing the possibilities?

So, is this code legal?  Specifically, the add_attributes function is outside of the scope 
of the class body itself.

Well, the use of ::?CLASS is a problem, as it is intended to be lexically scoped.  But 
that is no big deal, we just need to add a contextual variable for the same purpose, 
or pass it in as a parameter.  So, change ::?CLASS to ::+Class on that line.

What about the syntax for has statements?  Does the grammar only recognise that 
while inside a class definition, or is it always good?  It actually seems like more 
overhead to change the grammar in scope than to just leave them there, so unless 
there is some conflict, I think these should always work and direct their “calls” to 
the currently being built class.

 3 Class Dispatch
The dispatching of methods (SMD) on an object is completely up to the instance 
itself.  It is possible to implement hooks to foreign objects this way, as well as 
implement entirely new object systems that may not even be class based.



When a method call is seen, such as $x.foo, Perl 6 does not innately know what to 
do with that.  It must communicate with the meta object to look up the proper 
function to call.

Conceivably, that function can do anything it wants, in terms of how it organizes 
method code for instances.

But, it should not be limited to blind run-time lookup by name, but provides a rich 
enough compile-time interface to allow Perl 6 to build fast jump tables and do type 
checking, without needing to innately know how methods are organized.

So at compile time, the compiler could notice the declared type of $x and build a 
method table, notice that foo is number 5 in that table, and emit code to just go 
there on this line, arrange for tables of derived types to be supersets of the base 
tables, and reuse everything for all usage of that type in the program.  The compiler 
wants to do a lot to generate strongly-typed fast and checked code, but the meta 
object is still in charge.

 4 Terminology

 4.1 AST (Abstract Syntax Tree)
The parser produces an AST representation, and allows Perl code to examine and 
modify the tree before compilation continues.  This is specified for “macro” features, 
for writing more interesting grammatical constructs, and will be needed as part of 
the Metaobject interface.

 4.2 bless
In Perl 5, anything that will act as an object (that is, do virtual dispatch) has a 
pointer to a package that defines the methods.  The keyword bless installs this 
reference and turns the data structure into an object.

In Perl 6, it is not clear yet how close the situation is to being exactly the same. 
Every object has a reference to a “meta object” that controls dispatch, so blessing 
would refer to installing this meta object reference.  But is the meta object the same 
as a package?  That is yet to be determined, but I think it must be.  But, keep in 
mind that there might be another layer of abstraction here to be explored, and don’t 
assume that the package is the meta object is a class.

 4.3 class builder object
The “class builder” is something that is created when a class is being defined, and 
has methods called on it to build up the meaning of the class based on the contents 
of the class block in the source code.

It does not need to continue to exist after the class is finished, but another can be 
created to re-open an existing class (classes in Perl 6 are “open”).  The class builder 
is not the same object as the meta object.



 4.4 meta object
The “meta object” is the object that is in charge of dispatching normal (single) 
dispatch method calls.

This is not called the meta class because it does not have to be any particular type. 
The standard should explain how to create a working meta object in order to 
implement an object having virtual function dispatch, using only other Perl 6 
features.

The meta object is also expected to respond to dispatches to so-called “class 
methods” on that type.

The HOW method of any object returns the meta object.

 4.5 Meta Object Protocol (MOP)
A systematic way of using meta objects is called the MOP.  The normal built-in P6 
class system is one MOP.

The P6 Standard MOP (probably) makes a meta object for each defined class, and 
treats the meta object in the manner of a meta class, in a traditional class-based 
object system.

It’s possible to customize the dispatching of the P6 Standard MOP without replacing 
it completely, in order to interface with foreign objects, implement proxies, etc.

The concept of having different, configurable ways of storing private data (e.g. in a 
Hash that is the blessed object) is a feature of the P6 Standard MOP, not a concept 
that needs to be promoted to the Metaobject fundamental definition.

 4.6 SMD
The virtual function single dispatch system, as distinct from the MMD (multi method 
dispatch) system.  The meta object is in charge of SMD.  MMD is a different feature 
and is understood in a deeper way by the Perl language itself.

 5 Meta Object Design Details

 5.1 Bootstrapping
The first concern with writing a dispatcher as another object is the bootstrapping 
problem.  Suppose that $x.foo works by calling 

my $m = $x.HOW;
my $method = $m.can(“foo”);
$method();

So how does $m.can get dispatched?  It expands into an infinite recursion.

The meta object needs to be called using a more primitive system than method 
dispatch.  The more primitive way of organizing multiple functions into a unit is with 
a package containing subs and data.



So, we require that the meta object be implemented as a blessed package.  We know 
that certain primitive capabilities may be invoked by calling the sub in that package, 
without having to look for it (so if it is inherited, you have to make an alias in this 
package too).

But it needs to be blessed as an object as well, because if you do write code like 
above, it will not realize that you need the special way of calling and will dispatch 
the method.  So the meta object of the meta object is a form that makes the required 
organization work with normal dispatching.

So the call to $x.foo, using only the simplest run-time binding, generates code like 
this:

my ::M := $x.HOW;  # I know it is a package
my $method = M::can(“foo”);
$method;

That is, the call to can is a simple namespace-qualified call, not another dispatch.  

 5.2 Required Functions
The main point of the meta object is to provide for dispatch.  It is not always asked 
to call the located method, or to call it now, so its principle feature is a way in which 
to look up methods by name and return Code objects that may be called as a 
separate step.

The synopses mentions several things that can be performed once the meta object is 
obtained:

● Stringification

● attributes - get list of attributes

● bless - bless an instance into this class

● can – look up method

● does – test against role or base

● isa – test against base

● methods – get list of methods

and I’ve identified others already:

● buts – get list of properties aggregated into the single meta object

● re-open the class (return a new “class builder” object)

Other derived requirements will be listed here.

 5.3 Method Lookup
Here begins the design discussion notes for “how does this object allow the compiler 
to interoperate with its method management system”?



The simplest thing is a can function that works like in Perl 5. But according to S12: 
Unlike in Perl 5 where .can returns a single Code object, Perl 6's version of 
.HOW.can returns a "WALK" iterator for a set of routines that match the name, 
including all autoloaded and wildcarded possibilities. In particular, .can 
interrogates any class package's CANDO method for names that are to be considered 
autoloadable methods in the class, even if they haven't been declared yet. Role 
composition sometimes relies on this ability to determine whether a superclass 
supplies a method of a particular name if it's required and hasn't been supplied by 
the class or one of its roles. 

This makes it, at best, awkward to use in this capacity.  Yes, I want full 
introspection to explore all the inherited forms and sort them any which way.  But 
most of the time I want one answer, and that is the method to call.

Because of the differences in return type, I think these should be different functions: 
full blown query, and simple “tell me the method to call”.

Even in the simple case, where I’m relying on the meta object to know the rules of 
inheritance and delegation and all that and just want a single result, I can imagine 
calling it in different circumstances:

● Look up a method to call right away, as with run-time binding and no type 
information.

● Look up a method at compile time knowing only the static type, to be called 
many times at run time.

● Look up methods to populate a fast jump table based on the type.

● Look up methods that might not exist, but are added at run-time after the 
class was analyzed at compile time.

And even without doing anything rude to the class system, Perl 6 easily supports 
delegation and wildcards.  So the compile-time lookup might get back information 
that says “maybe, check at run-time” instead of a definite “no”.

For populating tables, the code returned can be closures which repeat the lookup 
when called.

So, I’m thinking that the can function will take various adverbs that indicate what 
the caller is really doing, e.g. if the method will be used immediately, or used to 
populate a table; whether it has an instance to look at or only the type itself, etc.

I also might need to know for sure I’m pointing to the real function Routine, not a 
thunk that repeats the lookup first.  For example, when addressing the Routine itself 
in order to check its properties or wrap it.  And does a method have to be a Routine, 
or will the more primitive Code do?

 5.4 More than Jello
To nail things down:

The name Metaobject exists as a role.  Classes implementing that role extend Package 
and use the proper compatibility implementation for the class storage, all specified 



by items in the role.

The name MetaMetaobject exists as a Package.  It contains implementation of a 
Metaobject that provides standard dispatching on the required structure of the 
Metaobject layout.  This is not the same as P5hash (it uses Package, not Hash).

 6 Class Builder Design Details

 6.1 Semantic Level
In order to work, the functions that accept items to add to the class definition need 
to interact with the compilation of those items.

The code blocks need to be processed to handle private data access.  This indicates 
that the blocks should be passed as ASTs, not as fully-compiled Code objects.  ASTs 
need to be well documented in order to allow people to write macros, anyway.

The parsing of code found within a class block needs to know about methods and 
other contents of the class.

 6.2 Class-Building Environment
When a class, role, or other feature based on Class Builder is pending, the current 
Class Builder will be available as a contextual variable.  It may also be available as a 
lexical variable within the scope of the class block.

Proposal:  $?CLASS_BUILDER and $+CLASS_BUILDER.

 6.3 Scenario
A declaration such as a has item will be parsed by special grammar rules that 
collect the parts using its special syntax.  The parts are fed as parameters to a 
method call on $+CLASS_BUILDER.

Code blocks, including the blocks of methods, are parsed into AST but then needs to 
involve the The Class Builder before continuing to process it into a Code object.  The 
Class Builder has a method for this purpose, that will go over an AST and replace 
generic “private attribute access” nodes with inline code that performs that access.

The Class Builder might also act as a server for local names, to provide parse-time 
knowledge of class contents including which names are types or functions, even 
though this is not a normal lexical scope in the block being compiled.

 6.4 Required Functions
One function for each kind of thing to add to the class definition, more or less.  Note 
that “is” is overloaded: will it determine earlier whether I am adding a base class or 
setting an option like “is rw”, and making different calls?  The the kind of thing to 
add needs to be determined early not late.

We need the function to complete the class (called with the block is closed).

We need the AST fixer.



We need the name server for the parser.


	 1 Perl 6 Class Building
	 2 How a Class is Made
	 2.1 Need for Standard
	 2.2 Executing Code at Compile Time

	 3 Class Dispatch
	 4 Terminology
	 4.1 AST (Abstract Syntax Tree)
	 4.2 bless
	 4.3 class builder object
	 4.4 meta object
	 4.5 Meta Object Protocol (MOP)
	 4.6 SMD

	 5 Meta Object Design Details
	 5.1 Bootstrapping
	 5.2 Required Functions
	 5.3 Method Lookup
	 5.4 More than Jello

	 6 Class Builder Design Details
	 6.1 Semantic Level
	 6.2 Class-Building Environment
	 6.3 Scenario
	 6.4 Required Functions


